Known 115-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 115-digit prime factors of googolduplex − 1
This is a list of known
115-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10259 1002359986 3052368164 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=141)
- 12639 9976649957 2100820392 7001445171 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=779)
- 19200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 26160 2185886367 5317931092 5837039429 1684608194 0770070656 7631872699 2570890553 8427984204 8649121412 3711122636 8000000001 (Phil Carmody, k=73)
- 30555 5396450172 9129402668 5326140672 4157720259 0498904375 9542106740 3157194964 5005059275 0960640000 0000000000 0000000001 (Phil Carmody, k=3)
- 34053 2769144727 4314380915 7620901590 3073552782 8621738723 2460800000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=217)
- 34175 7925747345 6131832034 7298712833 8336432723 5770644431 9152665725 1555156124 9024880036 7393390985 2160000000 0000000001 (Phil Carmody, k=1)
- 41198 1748511496 2188515764 9748723534 2596397010 9116956368 9657807546 3598578309 6430168370 7162737846 3745117187 5000000001 (Phil Carmody, k=147)
- 45191 8754744753 5053729027 9061099795 2337884476 2551763363 9165452155 4457624166 1900439794 4081574678 4210205078 1250000001 (Phil Carmody, k=129)
- 66750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=267)
- 68719 4767360000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 94262 7931171919 3912720473 8796915773 2667388210 5481635418 5614901298 8025302072 3672561167 7762532826 1657173950 4640000001 (Phil Carmody, k=411)