Known 104-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 104-digit prime factors of googolduplex − 1
This is a list of known
104-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1325 1352985837 8824718747 3125557188 8868706129 2265671421 8591204650 9694648320 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1367 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=10943)
- 1410 5932209867 4500956248 3844666694 8133823986 6812650502 5810502047 5341007113 4567260742 1875000000 0000000001 (Phil Carmody, k=3)
- 1480 9541015890 8543793947 2264301615 4544844622 7907022187 7013748121 6000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 1626 3032587282 5665101117 9201304912 5671386718 7500000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1941 1161600348 4606521602 5086265413 4085018743 9842292121 8639459937 9435520000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 2923 8089356829 6393113600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=317)
- 3231 1742677852 6435496644 0203398292 3967414535 5820655822 7539062500 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 3336 0033798816 6381202511 3303700253 5628360934 1509307792 6085656576 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=519)
- 5599 3618554445 1052639360 5701421110 6953041137 4308662383 7249972752 4094796779 5040236345 2193733179 0177894401 (Phil Carmody, k=1)
- 5929 2306307801 0237347825 7504757493 7343597412 1093750000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 6686 9447267197 1246080000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)
- 7654 6048000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=73)
- 8827 1743153875 1982414407 8876385780 8976439373 4377754853 3760000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 8979 4660597610 6752944343 9612208842 8727660495 4404454400 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)