Quadratic modular equation solver
This calculator can solve equations of the form ax² + bx + c ≡ 0 (mod n) where the integer unknown x is in the range 0 ≤ x < n. In particular, it can find modular square roots by setting a = -1, b = 0, c = number whose root we want to find and n = modulus.
You can type numbers or numerical expressions on the input boxes at the left.
The calculator accepts numbers of up to 1000 digits, but notice that the modulus n should be factored (some large numbers cannot be factored in a reasonable amount of time). The factorization engine is the one used in the Elliptic Curve Method factorization applet, that uses the methods ECM and SIQS.
When a is not zero, the number of solutions depends on the number of distinct prime factor of the modulus, so if the modulus has many small prime factors (say more than 14), the program could run out of memory and it will not show any solution.
Expressions
You can also enter expressions that use the following operators and parentheses:
- + for addition
- - for subtraction
- * for multiplication
- / for integer division
- % for modulus (remainder of the integer division)
- ^ or ** for exponentiation (the exponent must be greater than or equal to zero).
- <, ==, >; <=, >=, != for comparisons. The operators return zero for false and -1 for true.
- AND, OR, XOR, NOT for binary logic. The operations are done in binary (base 2). Positive (negative) numbers are prepended with an infinite number of bits set to zero (one).
- SHL: When b ≥ 0, a SHL b shifts a left the number of bits specified by b. This is equivalent to a × 2^{b}. Otherwise, a SHL b shifts a right the number of bits specified by −b. This is equivalent to floor(a / 2^{−b}). Example: 5 SHL 3 = 40.
- SHR: When b ≥ 0, a SHR b shifts a right the number of bits specified by b. This is equivalent to floor(a / 2^{b}). Otherwise, a SHR b shifts a left the number of bits specified by −b. This is equivalent to a × 2^{−b}. Example: -19 SHR 2 = -5.
- n!: factorial (n must be greater than or equal to zero). Example: 6! = 6 × 5 × 4 × 3 × 2 = 720.
- p#: primorial (product of all primes less or equal than p). Example: 12# = 11 × 7 × 5 × 3 × 2 = 2310.
- B(n): Previous probable prime before n. Example: B(24) = 23.
- F(n): Fibonacci number F_{n} from the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, etc. where each element equals the sum of the previous two members of the sequence. Example: F(7) = 13.
- L(n): Lucas number L_{n} = F_{n-1} + F_{n+1}
- N(n): Next probable prime after n. Example: N(24) = 29.
- P(n): Unrestricted Partition Number (number of decompositions of n into sums of integers without regard to order). Example: P(4) = 5 because the number 4 can be partitioned in 5 different ways: 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1.
- Gcd(m,n): Greatest common divisor of these two integers. Example: GCD(12, 16) = 4.
- Modinv(m,n): inverse of m modulo n, only valid when m and n are coprime, menaning that they do not have common factors. Example: Modinv(3,7) = 5 because 3 × 5 ≡ 1 (mod 7)
- Modpow(m,n,r): finds m^{n} modulo r. Example: Modpow(3, 4, 7) = 4, because 3^{4} ≡ 4 (mod 7).
- IsPrime(n): returns zero if n is not probable prime, -1 if it is. Example: IsPrime(5) = -1.
- NumDigits(n,r): Number of digits of n in base r. Example: NumDigits(13, 2) = 4 because 13 in binary (base 2) is expressed as 1101.
- SumDigits(n,r): Sum of digits of n in base r. Example: SumDigits(213, 10) = 6 because the sum of the digits expressed in decimal is 2+1+3 = 6.
- RevDigits(n,r): finds the value obtained by writing backwards the digits of n in base r. Example: RevDigits(213, 10) = 312.
You can use the prefix 0x for hexadecimal numbers, for example 0x38 is equal to 56.
The exponentiation symbol is not present in some mobile devices, so two asterisks ** can by typed as the exponentiation operator.
Source code
You can download the source of the current program and the old quadratic modular equation applet from GitHub. Notice that the source code is in C language and you need the Emscripten environment in order to generate Javascript.
Written by Dario Alpern. Last updated 21 December 2019.